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Introduction

In 1931 there appeared in a German scientific peri-
odical a relatively short paper with the forbidding title
“Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme” (“‘On Formally
Undecidable Propositions of Principia Mathematica
and Related Systems”). Its author was Kurt Gédel,
then a young mathematician of 25 at the University of
Vienna and since 1938 a permanent member of the In-
stitute for Advanced Study at Princeton. The paper is
a milestone in the history of logic and mathematics.
When Harvard University awarded Gédel an honor-
ary degree in 1952, the citation described the work as
one of the most important advances in logic in modern
times.

At the time of its appearance, however, neither the
title of Godel’s paper nor its content was intelligible to
most mathematicians. The Principia Mathematica
mentioned in the title is the monumental three-vol-
ume treatise by Alfred North Whitehead and Bertrand
Russell on mathematical logic and the foundations of
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4 Gédel's Proof

mathematics; and familiarity with that work is not a
prerequisite to successful research in most branches of
mathematics. Moreover, Godel’s paper deals with a set
of questions that has never attracted more than a com-
paratively small group of students. The reasoning of
the proof was so novel at the time of its publication
that only those intimately conversant with the tech-
nical literature of a highly specialized field could fol-
low the argument with ready comprehension. Never-
theless, the conclusions Godel established are now
widely recognized as being revolutionary in their
broad philosophical import. It is the aim of the present
essay to make the substance of Godel’s findings and the
general character of his proof accessible to the non-
specialist.

Godel’s famous paper attacked a central problem in
the foundations of mathematics. It will be helpful to
give a brief preliminary account of the context in
which the problem occurs. Everyone who has been ex-

posed to elementary geometry will doubtless recall -

that it is taught as a deductive discipline. It is not
presented as an experimental science whose theorems
are to be accepted because they are in agreement with
observation. This notion, that a proposition may be
established as the conclusion of an explicit logical
proof, goes back to the ancient Greeks, who discovered
what is known as the “axiomatic method” and used it
to develop geometry in a systematic fashion. The
axiomatic method consists in accepting without proof
certain propositions as axioms or postulates (e.g., the
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axiom that through two points just one straight line
can be drawn), and then deriving from the axioms all
other propositions of the system as theorems. The
axioms constitute the “foundations” of the system; the
theorems are the “superstructure,” and are obtained
from the axioms with the exclusive help of principles
of logic.

The axiomatic development of geometry made a
powerful impression upon thinkers throughout the
ages; for the relatively small number of axioms carry
the whole weight of the inexhaustibly numerous prop-
ositions derivable from them. Moreover, if in some
way the truth of the axioms can be established—and,
indeed, for some two thousand years most students be-
lieved without question that they are true of space—
both the truth and the mutual consistency of all the
theorems are automatically guaranteed. For these rea-
sons the axiomatic form of geometry appeared to many
generations of outstanding thinkers as the model of
scientific knowledge at its best. It was natural to ask,
therefore, whether other branches of thought besides
geometry can be placed upon a secure axiomatic foun-
dation. However, although certain parts of physics
were given an axiomatic formulation in antiquity
(e.g., by Archimedes), until modern times geometry
was the only branch of mathematics that had what
most students considered a sound axiomatic basis.

But within the past two centuries the axiomatic
method has come to be exploited with increasing
power and vigor. New as well as old branches of




6 Gddel’s Proof

mathematics, including the familiar arithmetic of
cardinal (or “whole”) numbers, were supplied with
what appeared to be adequate sets of axioms. A climate
of opinion was thus generated in which it was tacitly
umed that each sector of mathematical thought can
e supplied with a set of axioms sufficient for develop-
ng systematically the endless totality of true proposi-
ions about the given area of inquiry.

Godel’s paper showed that this assumption is un-
tenable. He presented mathematicians with the astound-
ing and melancholy conclusion that the axiomatic
method has.cexiain_inherent limitations, which_rule
out ibili i ic.of
the integers can ever be fully axiomatized. What is
more, he proved that it is impossible to establish the

internal logical consistency of a very large class of
deductive systems—elementaﬂ arithmetic, for, e

ample—unless one adopts principles of reasoning so

complex that their internal consistency is as open_to
these conclusions, no Anal systematization of many im-
portant areas of mathematics is attainable, and no abso-
lutely impeccable guarantee can be given that many
significant branches of mathematical thought are en-
tirely free from internal contradiction.

Gaodel’s findings thus undermined deeply rooted
preconceptions and demolished ancient hopes that
were being freshly nourished by research on the foun-
dations of mathematics. But his paper was not alto-
gether negative. It introduced into the study of foun-
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dation questions a new technique of analysis compara-
ble in its nature and fertility with the algebraic method
that René Descartes introduced into geometry. This
technique suggested and initiated new problems for
logical and mathematical investigation. It provoked a
reappraisal, still under way, of widely held philoso-
phies of mathematics, and of philosophies of knowl-
edge in general.

The details of Godel’s proofs in his epoch-making
paper are too difficult to follow without considerable
mathematical training. But the basic structure of his
demonstrations and the core of his conclusions can be
made intelligible to readers with very limited mathe-
matical and logical preparation. To achieve such an
understanding, the reader may find useful a brief ac-
count of certain relevant developments in the history
of mathematics and of modern formal logic. The next
four sections of this essay are devoted to this survey.
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The Problem of Consistency

The nineteenth century witnessed a tremendous ex-
pansion and intensification of mathematical research.
Many fundamental problems that had long withstood
the best efforts of earlier thinkers were solved; new
departments of mathematical study were created; and
in various branches of the discipline new foundations
were laid, or old ones entirely recast with the help of
- more precise techniques of analysis. To illustrate: the
Greeks had proposed three problems in elementary
geometry: with compass and straight-edge to trisect
any angle, to construct a cube with a volume twice the
volume of a given cube, and to construct a square
equal in area to that of a given circle. For more than
2,000 years unsuccessful attempts were made to solve
these problems; at last, in the nineteenth century it
was proved that the desired constructions are logically
impossible. There was, moreover, a valuable by-prod-
uct of these labors. Since the solutions depend es-
sentially upon determining the kind of roots that sat-
isfy certain equations, concern with the celebrated
8
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exercises set in antiquity stimulated profound investi-
gations into the nature of number and the structure of
the number continuum. Rigorous definitions were
eventually supplied for negative, complex, and irra-
tional numbers; a logical basis was constructed for the
real number system; and a new branch of mathematics,
the theory of infinite numbers, was founded.

But perhaps the most significant development in its
long-range effects upon subsequent mathematical his-
tory was the solution of another problem that the
Greeks raised without answering. One of the axioms
Euclid used in systematizing geometry has to do with
parallels. The axiom he adopted is logically equivalent
to (though not identical with) the assumption that
through a point outside a given line only one parallel
to the line can be drawn. For various reasons, this
axiom did not appear “self-evident” to the ancients.
They sought, therefore, to deduce it from the other
Euclidean axioms, which they regarded as clearly self-
evident.! Can such a proof of the parallel axiom be

1 The chief reason for this alleged lack of self-evidence seems
to have been the fact that the parallel axiom makes an asser-
tion about infinitely remote regions of space. Euclid defines
parallel lines as straight lines in a plane that, “being pro-
duced indefinitely in both directions,” do not meet. Accord-
ingly, to say that two lines are parallel is to make the claim
that the two lines will not meet even “at infinity.” But the
ancients were familiar with lines that, though they do not
intersect each other in any finite region of the plane, do meet
“at infinity.” Such lines are said to be “asymptotic.” Thus, a
hyperbola is asymptotic to its axes. It was therefore not in-
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given? Generations of mathematicians struggled with
this question, without avail. But repeated failure to
construct a proof does not mean that none can be
found any more than repeated failure to find a cure for
the common cold establishes beyond doubt that man-
kind will forever suffer from running noses. It was not
until the nineteenth century, chiefly through the work
of Gauss, Bolyai, Lobachevsky, and Riemann, that the
impossibility of deducing the parallel axiom from the
others was demonstrated. This outcome was of the
greatest intellectual importance. In the first place, it
called attention in a most impressive way to the fact
that a proof can be given of the impossibility of prov-
ing certain propositions within a given system. As we
shall see, Godel’s paper is a proof of the impossibility
of demonstrating certain important propositions in
arithmetic. In the second place, the resolution of the
parallel axiom question forced the realization that
Euclid is not the last word on the subject of geometry,
since new systems of geometry can be constructed by

using a number of axioms different from, and incom-

patible with, those adopted by Euclid. In particular,
as is well known, immensely interesting and fruitful
results are obtained when Euclid’s parallel axiom is re-
placed by the assumption that more than one parallel
can be drawn to a given line through a given point, or,
alternatively, by the assumption that no parallels can
tuitively evident to the ancient geometers that from a point

outside a given straight line only one straight line can be
drawn that will not meet the given line even at infinity.
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be drawn. The traditional belief that the axioms of
geometry (or, for that matter, the axioms of any dif-
cipline) can be established by their apparent self-ev.l-
dence was thus radically undermined. Moreover, it
gradually became clear that the proper business of the
pure mathematician is to derive theorems from postu-
lated assumptions, and that it is not his concern as a
mathematician to decide whether the axioms he as-
sumes are actually true. And, finally, these successful
modifications of orthodox geometry stimulated the re-
vision and completion of the axiomatic bases for many
other mathematical systems. Axiomatic foundations
were eventually supplied for fields of inquiry tha-t hafl
hitherto been cultivated only in a more or less intui-
tive manner. (See Appendix, no. 1.)

The over-all conclusion that emerged from these
critical studies of the foundations of mathematics is
that the age-old conception of mathematics as “the
science of quantity” is both inadequate a‘mi .rm:'slead-
ing. For it became evident that mathematics is simply
the discipline par excellence that draws the .conclu-
sions logically implied by any given set of axioms or
postulates. In fact, it came to be acknowledged that
the validity of a mathematical inference in no sense de-
pends upon any special meaning that may be associated
with the terms or expressions contained in the postu-
lates. Mathematics was thus recognized to be much
more abstract and formal than had been traditionally
supposed: more abstract, because mathematical state-
ments can be construed in principle to be about any-
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thing whatsoever rather than about some inherently
circumscribed set of objects or traits of objects; and
more formal, because the validity of mathematical
demonstrations is grounded in the structure of state-
ments, rather than in the nature of a particular subject
matter. The postulates of any branch of demonstrative
mathematics are not inherently about space, quantity,
apples, angles, or budgets; and any special meaning
that may be associated with the terms (or “descriptive
predicates”) in the postulates plays no essential role in
the process of deriving theorems. We repeat that the
sole question confronting the pure mathematician
(as distinct from the scientist who employs mathe-
matics in investigating a special subject matter) is not
whether the postulates he assumes or the conclusions
he deduces from them are true, but whether the
alleged conclusions are in fact the necessary logical
consequences of the initial assumptions.

Take this example. Among the undefined (or
“primitive”) terms employed by the influential Ger-
man mathematician David Hilbert in his famous
axiomatization of geometry (first published in 18gg)
are ‘point’, ‘line’, ‘lies on’, and ‘between’. We may
grant that the customary meanings connected with
these expressions play a role in the process of discover-
ing and learning theorems. Since the meanings are
familiar, we feel we understand their various interre-
lations, and they motivate the formulation and selec-
tion of axioms; moreover, they suggest and facilitate
the formulation of the statements we hope to establish
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as theorems. Yet, as Hilbert plainly states, ir}sofar as
we are concerned with the primary mathematical task
of exploring the purely logical relations of (%ependence
between statements, the familiar connotanons“of the
primitive terms are to be ignored, and the sole “mean-
ings” that are to be associated with them arezthose: as-
signed by the axioms into which they enter. Thlsh 15.
the point of Russell’s famous epigram: pure mathe
matics is the subject in which we do not know wh.at we
are talking about, or whether what we are saying 1s
true. =
A land of rigorous abstraction, empty of all f.amlhar
landmarks, is certainly not easy to get around in. But
it offers compensations in the form of a new f‘reedonf of
movement and fresh vistas. The intensified .formahza-
tion of mathematics emancipated men’s mmds‘ from
the restrictions that the customary interpretation of
expressions placed on the construction of novel systems
of postulates. New kinds of algebnfs and geometries
were developed which marked significant depa_lrtures
from the mathematics of tradition. As the meanings of
certain terms became more general, their use became
broader and the inferences that could be drawn fr.orn
them less confined. Formalization led to a great variety
of systems of considerable mathematical interest and

—— P

2 In more technical language, the primitive terms are “:d
plicitly” defined by the axioms, and whatever is not cover
by the implicit definitions is irrelevant to the demonstration
of theorems.
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value. Some of these systems, it must be admitted, did
not lend themselves to interpretations as obviously in-
tuitive (i.e., commonsensical) as those of Euclidean
geometry or arithmetic, but this fact caused no alarm.,
Intuition, for one thing, is an elastic faculty: our chil-
dren will probably have no difficulty in accepting as
intuitively obvious the paradoxes of relativity, just as
we do not boggle at ideas that were regarded as wholly
unintuitive a couple of generations ago. Moreover, as
we all know, intuition is not a safe guide: it cannot
properly be used as a criterion of either truth or fruit.
fulness in scientific explorations.

However, the increased abstractness of mathematics
raised a more serious problem. It turned on the ques-
tion whether a given set of postulates serving as foun-
dation of a system is internally consistent, so that no
mutually contradictory theorems can be deduced from
the postulates. The problem does not seem pressing
when a set of axioms is taken to be about a definite
and familiar domain of objects; for then it is not only
significant to ask, but it may be possible to ascertain,
whether the axioms are indeed true of these objects.
Since the Euclidean axioms were generally supposed
to be true statements about space (or objects in space),
no mathematician prior to the nineteenth century ever

considered the question whether a pair of contra-
dictory theorems might some day be deduced from the
axioms. The basis for this confidence in the consistency
of Euclidean geometry is the sound principle that logi-
cally incompatible statements cannot be simultane-
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ously true; accordingly, if a set of statemfmts is true
(and this was assumed of the Euclidean axioms), these
statements are mutually consistent. ;

The non-Euclidean geometries were clearly in a
different category. Their axioms were initially re-
garded as being plainly false of space, and, for that
matter, doubtfully true of anything; thus the problem
of establishing the internal consistency of nc.m-Eu-
clidean systems was recognized to be both formidable
and critical. In Riemannian geometry, for example,
Euclid’s parallel postulate is replaced by the assump-
tion that through a given point outside a line no paral-
lel to it can be drawn. Now suppose the question: Is the
Riemannian set of postulates consistent? The pf)stu—
lates are apparently not true of the space of ordinary
experience. How, then, is their consistency to be
shown? How can one prove they will not lead to con-
tradictory theorems? Obviously the question is not
settled by the fact that the theorems alread)t (%e'duced
do not contradict each other—for the possibility re-
mains that the very next theorem to be dedT..lCCd may
upset the apple cart. But, until the question is sett]ted,
one cannot be certain that Riemannian geometry is a
true alternative to the Euclidean system, i.e., equally
valid mathematically. The very possibility of non-Eu-
clidean geometries was thus contingent on the reso-
lution of this problem. -

A general method for solving it was de“:.lsed. The
underlying idea is to find a2 “model” (or “interpreta-
tion”) for the abstract postulates of a system, so that
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cach postulate is converted into a true statement about
the model. In the case of Euclidean geometry, as we
have noted, the model was ordinary space. The method
was used to find other models, the elements of which
could serve as crutches for determining the consistency
of abstract postulates. The procedure goes something
like this. Let us understand by the word ‘class’ a col-
lection or aggregate of distinguishable elements, each
of which is called a member of the class. Thus, the
class of prime numbers less than 10'is the collection
whose members are ¢, 3, 5, and 7. Suppose the follow-
ing set of postulates concerning two classes K and L,
whose special nature is left undetermined except as
“implicitly” defined by the postulates:

1. Any two members of K are contained in
just one member of L.

2. No member of K is contained in more
than two members of L.

3. The members of K are not all contained
in a single member of L.

4. Any two members of L contain just one
member of K.

5. No member of L contains more than
two members of K.

From this small set we can derive, by using cus-
tomary rules of inference, a number of theorems. For
example, it can be shown that K contains just three
members. But is the set consistent, so that mutually
contradictory theorems can never be derived from
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it? The question can be answered readily with the
‘help of the following model:

Let K be the class of points consisting of
the vertices of a triangle, and L the class of
lines made up of its sides; and let us under-
stand the phrase ‘a member of K is contained
in a2 member of L’ to mean that a point which
is a vertex lies on a line which is a side. Each
of the five abstract postulates is then con-
verted into a true statement. For instance,
the first postulate asserts that any two points
which are vertices of the triangle lie on just
one line which is a side. (See Fig. 1.) In this
way the set of postulates is proved to be con-
sistent. '

K

K K
] L
Fig. 1.
Model for a set of postulates about two classes, K and L, is a
triangle whose vertices are the members of K and whose sides
are the members of L. The geometrical model shows that the
postulates are consistent.

The consistency of plane Riemannian geometry can
also, ostensibly, be established by a model embodying
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the postulates. We may interpret the expression
‘plane’ in the Riemannian axioms to signify the sur-
face of a Euclidean sphere, the expression ‘point’ a
point on this surface, the expression ‘straight line’ an
arc of a great circle on this surface, and so on. Each
Riemannian postulate is then converted into a theorem
of Fuclid. For example, on this interpretation the
Riemannian parallel postulate reads: Through a point
on the surface of a sphere, no arc of a great circle can
be drawn parallel to a given arc of a great circle. (See
Fig. 2.)

At first glance this proof of the consistency of Rie-
mannian geomeiry may seem conclusive. But a closer
look is disconcerting. For a sharp eye will discern that
the problem has not been solved; it has merely been
shifted to another domain. The proof attempts to set-
tle the consistency of Riemannian geometry by appeal-
ing to the consistency of Euclidean geometry. What

emerges, then, is only this: Riemannian geometry is.

consistent if Euclidean geometry is consistent. The
authority of Euclid is thus invoked to demonstrate the
consistency of a system which challenges the exclusive
validity of Euclid. The inescapable question is: Are
the axioms of the Euclidean system itself consistent?
An answer to this question, hallowed, as we have
noted, by a long tradition, is that the Euclidean axioms
are true and are therefore consistent. This answer is
Fig. 2
The non-Euclidean geometry of Bernhard Riemann can be

represented by a Euclidean model. The Riemannian plane be-
comes the surface of a Euclidean sphere, points on the plane

|

become points on this surface, straight lines in the plane be-
come great circles. Thus, a portion of the Riemannian plane
bounded by segments of straight lines is depicted as a portion
of the sphere bounded by parts of great circles (center). Two
line segments in the Riemannian plane are two segments of
great circles on the Euclidean sphere (bottom), and these, if
extended, indeed intersect, thus contradicting the parallel
postulate.
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no longer regarded as acceptable; we shall return to it
presently and explain why it is unsatisfactory. An-
other answer is that the axioms jibe with our actual,
though limiited, experience of space and that we are
justified in extrapolating from the small to the uni-
versal. But, although much inductive evidence can be
adduced to support this claim, our best proof would be
logically incomplete. For even if all the observed

facts are in agreement with the axioms, the possibility-

is open that a hitherto unobserved fact may contradict
them and so destroy their title to universality. In-
ductive considerations can show no more than that the
axioms are plausible or probably true.

Hilbert tried yet another route to the top. The clue
to his way lay in Cartesian coordinate geometry. In
his interpretation Euclid’s axioms were simply trans-
formed into algebraic truths. For instance, in the
axioms for plane geometry, construe the expression
‘point’ to signify a pair of numbers, the expression
‘straight line’ the (linear) relation between numbers
expressed by a first degree equation with two un-
knowns, the expression ‘circle’ the relation between
numbers expressed by a quadratic equation of a certain
form, and so on. The geometric statement that two
distinct points uniquely determine a straight line is
then transformed into the algebraic truth that two
distinct pairs of numbers uniquely determine a linear
relation; the geometric theorem that a straight line
intersects a circle in at most two points, into the
algebraic theorem that a pair of simultaneous equa-
tions in two unknowns (one of which is linear and the

i
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other quadratic of a certain type) determine at most
two pairs of real numbers; and so on. In brief, the con-
sistency of the Euclidean postulates is established by
showing that they are satisfied by an algebraic model.
This method of establishing consistency is powerful
and effective. Yet it, too, is vulneérable to the objection
already set forth. For, again, a problem in one domain
is resolved by transferring it to another. Hilbert's
argument for the consistency of his geometric postu-
lates shows that if algebra is consistent, so is his geo-
metric system. The proof is clearly relative to the as-
sumed consistency of another system and is not an
“absolute” proof.

In the various attempts to solve the problem of con-
sistency there is one persistent source of difhculty. It
lies in the fact that the axioms are interpreted by
models composed of an infinite number of elements.
This makes it impossible to encompass the models in a
finite number of observations; hence the truth of the
axioms themselves is subject to doubt. In the induc-
tive argument for the truth of Euclidean geometry, a
finite number of obhserved facts about space are pre-
sumably in agreement with the axioms. But the con-
clusion that the argument seeks to establish involves
an extrapolation from a finite to an infinite set of data.
How can we justify this jump? On the other hand, the
difficulty is minimized, if not completely eliminated,
where an appropriate model can be devised that con-
tains only a finite number of elements. The triangle
model used to show the consistency of the five abstract
postulates for the classes K and L is finite; and it is
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comparatively simple to determine by actual inspec-
tion whether all the elements in the model actually
satisfy the postulates, and thus whether they are true
(and hence consistent). To illustrate: by examining in
turn all the vertices of the model triangle, one can
learn whether any two of them lie on just one side—so
that the first postulate is established as true. Since all
the elements of the model, as well as the relevant re-
Iations among them, are open to direct and exhaustive
inspection, and since the likelihood of mistakes oc-
curring in inspecting them is practically nil, the con-
sistency of the postulates in this case is not a matter
for genuine doubt.

Unfortunately, most of the postulate systems that
constitute the foundations of important branches of
mathematics cannot be mirrored in finite models. Gon-
sider the postulate in elementary arithmetic which as-
serts that every integer has .an immediate successor
differing from any preceding integer. It is evident that
the model needed to test the set to which this postulate
belongs cannot be finite, but must contain an infinity
of elements. It follows that the truth (and so the con-
sistency) of the set cannot be established by an ex-
haustive inspection of a limited number of elements.
Apparently we have reached an impasse. Finite models
suffice, in principle, to establish the consistency of cer-
tain sets of postulates; but these are of slight mathe-
matical importance. Non-finite models, necessary for
the interpretation of most postulate systems of mathe-
matical significance, can be described only in general
terms; and we cannot conclude as a matter of course
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that the descriptions are free from concealed contra-
dictions.

It is tempting to suggest at this point that we can be
sure of the consistency of formulations in which non-
finite models are described if the basic notions em-
ployed are transparently “clear” and ‘“distinct.” But
the history of thought has not dealt kindly with the
doctrine of clear and distinct ideas, or with the doc-
trine of intuitive knowledge implicit in the suggestion.
In certain areas of mathematical research in which
assuraptions about infinite collections play central
roles, radical contradictions have turned up, in spite of
the intuitive clarity of the notions involved in the as-
sumptions and despite the seemingly consistent char-
acter of the intellectual constructions performed. Such
contradictions (technically referred to as “antinomies”)
have emerged in the theory of infinite numbers, de-
veloped by Georg Cantor in the nineteenth century;
and the occurrence of these contradictions has made
plain that the apparent clarity of even such an ele-
mentary notion as that of class (or aggregate) does not
guarantee the consistency of any particular system
built on it. Since the mathematical theory of classes,
which deals with the properties and relations of ag-
gregates or collections of elements, is often adopted as
the foundation for other branches of mathematics, and
in particular for elementary arithmetic, it is pertinent
to ask whether contradictions similar to those en-
countered in the theory of infinite classes infect the
formulations of other parts of mathematics.

In point of fact, Bertrand Russell constructed a con-

C
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tradiction within the framework of elementary logic
itself that is precisely analogous to the contradiction
first developed in the Cantorian theory of infinite
classes. Russell’s antinomy can be stated as follows.
Classes seem to be of two kinds: those which do not
contain themselves as members, and those which do.
A class will be called “normal” if, and only if, it docs
not contain itself as a member; otherwise it will be
called “non-normal.” An example of a normal class is
the class of mathematicians, for patently the class itself
is not a mathematician and is therefore not a member
of itself. An example of a non-normal class is the class
of all thinkable things; for the class of all thinkable
things is itself thinkable and is therefore a member of
itself. Let ‘N’ by definition stand for the class of all
normal classes. We ask whether N itself is a normal
class. If N is normal, it is a member of itself (for by
definition N contains all normal classes); but, in that
case, N is non-normal, because by definition a class
that contains itself as a2 member is non-normal. On the
other hand, if N is non-normal, it is a member of it-
self (by definition of non-normal); but, in that case, N
is normal, because by definition the members of N are
normal classes. In short, N is normal if, and only if, N
is non-normal. It follows that the statement ‘N is
normal’ is both true and false. This fatal contradic-
tion results from an uncritical use of the apparently
pellucid notion of class. Other paradoxes were found
later, each of them constructed by means of familiar
and seemingly cogent modes of reasoning. Mathe-
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maticians came to realize that in developing consistent
systems familiarity and intuitive clarity are weak reeds
to lean on. ‘

We have seen the importance of the problem of con-
sistency, and we have acquainted ourselves with the
classically standard method for solving it with the help
of models. It has been shown that in most instances
the problem requires the use of a non-finite model, the
description of which may itself conceal inconsistencies.
We must conclude that, while the model method is an
invalunable mathematical tool, it does not supply a final
answer to the problem it was designed to solve.
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Gédel's Proofs

Godel's paper is difficult. Forty-six preliminary defini-
tions, together with several important preliminary
theorems, must be mastered before the main results are
reached. We shall take a much easier road; neverthe-
less, it should afford the reader glimpses of the ascent
and of the crowning structure.

A Godel numbering

Godel described a formalized calculus within which all
the customary arithmetical notations can be expressed

and familiar arithmetical relations established. The
formulas of the calculus are constructed out of a class

of elementary signs, which constitute the fundamental
vocabulary. A set of primitive formulas (or axioms)
are the underpinning, and the theorems of the calculus
are formulas derivable from the axioms with the help

15 He used an adaptation of the system developed in Prin-
cipia Mathematica, But any calculus within which the cardinal
number system can be constructed would have served his pur-
pose.
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of a carefully enumerated set of Transformation
Rules (or rules of inference).

Godel first showed that it is possible to assign a
unique number to each elementary sign, each formula
(or sequence of signs), and each proof (or finite se-
quence of formulas). This number, which serves as a
distinctive tag or label, is called the “Godel number”
of the sign, formula, or proof.*s

The elementary signs belonging to the fundamental
vocabulary are of two kinds: the constant signs and the
variables. Weé shall assume that there are exactly ten
constant signs,*” to which the integers from 1 to 10 are
attached as Godel numbers. Most of these signs are
already known to the reader: ‘~’ {short for ‘not’); vV’
(short for ‘or’); ‘D’ (short for ‘if . .. then .. .); '=
(short for ‘equais’); ‘0’ (the numeral for the number
zero); and three signs of punctuation, namely, the left
parenthesis ‘(’, the right parenthesis ‘)", and the comma
‘. In addition, two other signs will be used: the in-
verted letter ‘T’, which may be read as ‘there is’ and
which occurs in “existential quantifiers”’; and the

16 There are many alternative ways of assigning Godel
numbers, and it is immaterial to the main argument which is
adopted. We give a concrete example of how the numbers can
be assigned to help the reader follow the discussion. The
method of numbering used in the text was employed by
Gddel in his 1931 paper.

17 The number of constant signs depends on how the formal
calculus is set up. Godel in his paper used only seven con-
stant signs. The text uses ten in order to avoid certain com-
plexities in the exposition. '
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lower-case ‘s’, which is attached to numerical expres-
sions to designate the immediate successor of a num-
ber. To illustrate: the formula ‘Fx)(x = s0)’ may be
read ‘“There is an x such that x is the immediate suc-
cessor of 0", The table below displays the ten constant
.signs, states the Gédel number associated with each,
and indicates the usual meanings of the signs.

Constant Godel
Signs Number Meaning
~ ' 1 not
v 2 or
) 3 If ... then
| 4 Thereisan ...
= 5 equals
0 6 ZETO
s i The immediate
successor of
8 punctuation mark
) 9 punctuation mark
’ 10 punctuation mark
TABLE 2

Besides the constant elementary signs, three kinds
of variables appear in the fundamental vocabulary
of the calculus: the numerical variables ‘%', 'y, ‘2,
etc,, for which numerals and numerical expres-
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sions may be substituted; the sentential variables ‘p’,
‘q’, 'r’, etc., for which formulas (sentences) may be
substituted; and the predicate variables ‘P, ‘Q’, ‘R’,
etc., for which predicates, such as ‘Prime’ or ‘Greater
than’, may be substituted. The variables are assigned
Gédel numbers in accordance with the following rules:
associate (i) with each distinct numerical variable a
distinct prime number greater than 10; (ii) with each
distinct sentential variable the square of a prime num-
ber greater than 10; and (1ii) with each distinct predi-
cate variable the cube of a prime greater than 10. The

- accompanying table illustrates the use of these rules to

specify the Godel numbers of a few variables.

Numerical Godel A Possible

Variable Number Substitution Instance
11 0
13 s0

z 17 y

Numerical variables are associated with prime numbers
greater than 10.

Sentential Godel A Possible

Variable Number Substitntion Instance
4 11% 0=0

g 13° (Fx)(x = sy)

4 17? pogq

Sentential variables are associated with the squares of prime
numbers greater than ro.
F
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Predicate Godel A Possible

Variable Number Substitution Instance
P 118 Prime

Q 137 Composite

R 1° Greater than

Predicate Variables are associated with the cubes of prime
numbers greater than 1o.

TaABLE 3

Consider next a formula of the system, for example,
‘(3x)(x = sy)". (Literally translated, this reads: “There
is an x such that x is the immediate successor of y°, and
says, in effect, that every number has an immediate suc-
cessor.y The numbers associated with its ten con-
stituent elementary signs are, respectively, 8, 4, 11, g,
8, 11, 5, 7, 13, 9. We show this schematically below:

(3 % ) (x =5 9y )
I 2R IR
84 1198 11 5 7139

It is desirable, however, to assign a single number to
the formula rather than a set of numbers. This can be
done easily. We agree to associate with the formula the
unique number that is the product of the first ten
primes in order of magnitude, each prime being raised
to a power equal to the Godel number of the cor-
responding elementary sign. The above formula is ac-
cordingly associated with the number

Gadel Numbering 3
28 X 34 >< 511 pd 79 x 118 X 1?)11 X 175 b4 197.
X 25" X 29%
let us refer to this number as m. In a similar fashion, a
unique number, the product of as many primes as
there are signs (each prime being raised to a power
equal to the Gédel number of the corresponding sign),
can be assigned to every finite sequence of elementary
signs and, in particular, to every formula.’®
Consider, finally, a sequence of formulas, such as
may occur in some proof, e.g., the sequence:

(Ax)(x = sy)
(Ix)(x = s0)

The second formula when translated reads ‘0 has an

18 Signs may occur in the calculus which do not appear in
the fundamental vocabulary; these are introduced by defining
them with the help of the vocabulary signs. For example, the
sign ‘-’, the sentential connective used as an abbreviation for
‘and’, can be defined in context as follows: ‘p - g’ is short for
‘i (~ PV ~q). What G6del number is assigned to a de-
fined sign? The answer is obvious if we notice that expressions
containing defined signs can be eliminated in. favor of their
defining equivalents; and it is clear thai a Gbédel number can
be determined for the transformed expressions. -Accordingly,
the Gédel number of the formula “p - ¢ is the Gédel number
of the formula ‘~ (~ pV ~ g). Similarly, the various nu-
merals can be introduced by definition as follows: *1” as short
for ‘s07, ‘2" as short for ‘ss0’, ‘g’ as short for ‘sssQ’, and so on.
To obtain the Gadel number for the formula ‘~ (2 = 3), we
eliminate the defined signs, thus obtaining the formula
‘~ (330 = ss30)’, and determine its Godel number pursuant to
the rules stated in the text.
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immediate successor’; it is derivable from the first by
substituting the numeral ‘0’ [or the numerical variable
‘»".1%. We have already determined the Godel number
of the first formula: it is m; and suppose that n is the
Gidel number of the second formula. As before, it is
convenient to have a single number as a tag for the
sequence. We agree therefore to associate with it the
number which is the product of the first two primes in
order of magnitude (i.e, the primes 2 and g), each
prime being raised to a power equal to the Gédel num-
ber of the corresponding formula in the sequence. If
we call this number &, we can write k = 2™ X g*. By
applying this compact procedure we can obtain a num-
ber for each sequence of formulas, In sum, every ex-
pression in the system, whether an elementary sign, a
sequence of signs, or a sequence of sequences, can be
assigned a unique Godel number,

What has been done so far is to establish a method
for completely “arithmetizing’ the formal calculus.
The method is essentially a set of directions for setting
up a one-to-one correspondence between the expres-
sions in the calculus and a certain subset of the in-

1% The reader will recall that we defined a proof as a finite
sequence of formulas, each of which either is an axiom or can
be derived from preceding formulas in the sequence with the
help of the Transformation Rules. By this definition the
above scquence is not a proof, since the first formula is not an
axiom and its derivation from the axioms is not shown: the
sequence is only a segment of a proof. It would take too long
to write out a full example of a proof, and for illustrative
purposes the above sequence will suffice.
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tegers.® Once an expression is given, the Godel num-
ber uniquely corresponding to it can be calculated.
But this is only half the story. Once a number is given,
we can determine whether it is a Gédel number, and, if
it is, the expression it represents can be exactly ana-
lyzed or “retrieved.” If a given number is less than or
equal to 10, it is the Godel number of an elementary
constant sign. The sign can be identified. If the num-
ber is greater than 1o, it can be decomposed. into its
prime factors in just one way (as we know from a fa-
mous theorem of arithmetic).®* If it is a prime greater
than 10, or the second or third power of such a prime,
it is the Godel number of an identifiable variable. If it
is the product of successive primes, each raised to some
power, it may be the Gédel number either of a formula

20 Not every integer is a Godel number. Consider, for ex-
ample, the number 100. 100 is greater than 10, and therefore

_ cannot be the Gédel number of an elementary constant sign;

and since it is neither a prime greater than 10, nor the square
nor the cube of such a prime, it cannot be the Godel number
of a variable. On decomposing 100 into its prime factors, we
find that it is equal to 22 X 5% and the prime number § does
not appear as a factor in the decomposition, but is skipped.
According to the rules laid down, however, the Gdédel num-
ber of a formula (or of a sequence of formulas) must be the
product of successive primes, cach raised to some power. The
number 100 does not satisfy this condition. In short, 100 can-
not be assigned to constant signs, variables, or formulas; hence
it is not a Godel number.

21 This theorem is known as the fundamental theorem of
arithmetic. It says that if an integer is composite (i.e, not a
prime) it has a unique decomposition into prime factors.
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or of a sequence of formulas. In this case the expres-
sion to which it corresponds can be exactly determined.
Following this program, we can take any given number
apart, as if it were a' machine, discover how it is con-
structed and what goes into it; and since each of its
elements corresponds to an element of the expression
it represents, we can reconstitute the expression, ana-
lyze its structure, and the like. Table 4 illustrates for
a given number how we can ascertain whether it is'a
Gédel number and, if so, what expression it syrﬁbolizes.

A 248,000,000
B 64 X 248 X 15,625
G 29 X 8° X 5°
1] 5 L3
D R T
0 = 0
E 0=20

The arithmetical formula ‘zero equais zero® has
the Godel number 243 million. Reading down
from A to E, the illustration shows how the num-
ber is translated into the expression it represents;
reading up, how the number for the, formula is
derived.

TABLE 4

B The orithmetization of meta-mathematics

Godel's next step is an ingenious application of map-
ping. He showed that all meta-mathematical state-
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ments about the structural properties of expressions in
the calculus can be adequately mirrored within the
calculus itself. The basic idea underlying his pro-
cedure is this: Since every expression in the calculus is
associated with a (Godel) number, a meta-mathe-
matical statement about expressions and their relations
to one another may be construed as a statement about
the corresponding (Godel) numbers and their arith-
metical relations to one another. In this way meta-
mathematics becomes completely “arithmetized.” To
take a trivial analogue: customers in a busy super-
market are often given, when they enter, tickets on
which are printed numbers whose order determines
the order in which the customers are to be waited on at
the meat counter. By inspecting the numbers it is easy-
to tell how many persons have been served, how many
are waiting, who precedes whom, and by how many
customers, and so on. If, for example, Mrs. Smith has
number g7, and Mrs. Brown number 53, instead of ex-
plaining to Mrs. Brown that she has to wait her turn
after Mrs. Smith, it suffices to point out that g7 is less
than 53. '

As in the supermarket, so in meta-mathematics.
Fach meta-mathematical statement is represented by a
unique formula within arithmetic; and the relations of
logical dependence between meta-mathematical state-
ments are fully reflected in the numerical relations of
dependence between their corresponding arithmetical
formulas. Once again mapping facilitates an inquiry

_into structure. The exploration of meta-mathematical
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questions cant be pursued by investigating the arith-
‘metical properties-and relations of certain integers.

We illustrate these general remarks by an elemen-
tary example. Consider the first axiom of the senten-
tial calculus, which also happens to be an axiom in the
formal system under discussion: ‘(p vV p) 2 p'. Its Gdel
number 15 2% X g™ X 5* X 7™ X 117 X 187 X 17T,
which we shall designate by the letter ‘a’. Consider
also the formula: ‘(p V$)’, whose Godel number is
2% X g™ X 5* X 7'" X 11"; we shall designate it by the
letter ', We now assert the meta-mathematical state-
ment that the formula ‘(p V )’ is an initial part of the
axiom. To what arithmetical formula in the formal
system does this statement correspond? It is evident
that the smaller formula ‘(f V $)’ can be an initial part
of the larger formula which is the axiom if, and only if,
the (Goédel) number b, representing the former, is a
factor of the (Godel) number a, representing the
latter. On the assumption that the expression ‘factor
of’ is suitably defined in the formalized arithmetical
system, the arithmetical formula which uniquely cor-
responds to the above meta-mathematical statement is:
‘i is a factor of @’. Moreover, if this formula is true,
i.e., if b is a factor of 4, then it is true that ‘(p V )’ is
an initial part of ‘(pV p) 2 p".

Let us fix attention on the meta-mathematical state-
ment: “The sequence of formulas with Gdel number
x is a proof of the formula with Gidel number 2. This
statement is represented (mirrored) by a definite for-
mula in the arithmetical calculus which expresses a

The Arithmetization of Meta-mathematics g

purely arithmetical relation between ¥ and z. (We can
gain some notion of the complexity of this relation by
recalling the example used above, in which the Godel
number & == 2" X 3" was assigned to the (fragment of
a) proof whose conclusion has the Gédel number n. A
little reflection shows that there is here a definite,
though by no means simple, arithmetical relation be-
tween %, the Gédel number of the proof, and n, the
Godel number of the conclusion.) We write this rela-
tion between x and z as the formula ‘Dem (x, z)’, to re-
mind ourselves of the meta-mathematical statement to
which it corresponds (i.e., of the meta-mathematical
statement “I'he sequence of formulas with Gddel num-
ber x is a proof (or demonstration) of the formula with
Godel number z').? We now ask the reader to ob-
serve that a2 meta-mathematical statement which says
that a certain sequence of formulas is a proof for a
given formula is true, if, and only if, the Gidel num-
ber of the alleged proof stands to the Gédel number of
the conclusion in the arithmetical relation here desig-
nated by ‘Dem’. Accordingly, to establish the truth or
falsity of the meta-mathematical statement under dis-
cussion, we need concern ourselves only with the ques-

22 The reader must keep clearly in mind that, though
‘Dem (x, z)’ represents the meta-mathematical statement, the
formula itself belongs to the arithmetical calculus. The for-
mula could be written in more customary notation as
f(x, z) = 0', where the letter ‘f’ denotes a complex set of
arithmetical operations upon numbers. But this more cus-
tomary notation does not immediately suggest the meta-
mathematical interpretation of the formula.
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tion whether the relation Dem holds between two
numbers. Conversely, we can establish that the arith-
metical relation holds between a pair of numbers by
showing that the meta-mathematical statement mir-
rored by this relation between the numbers is true.
Similarly, the meta-mathematical statement “The se-
quence of formulas with the Godel number x is not a
proof for the formula with the Godel number 2° is
represented by a definite formula in the formalized
arithmetical system. This formula is the formal con-
tradictory of ‘Dem (x, z}’, namely, ‘~ Dem (x, z)".

One additional bit of special notation is needed for
stating the crux of Godel's argument. Begin with an
example. The formula ‘(3x)(x = sy)’ has m for its
Godel number (see page 473), while the variable “y’ has
the Gédel number 13. Substitute in this formula for
the variable with Gédel number 13 (i.e., for ‘y’) the nu-
meral for m. The result is the formula ‘(3x)(x = sm)’,
which says literally that there is a number % such that
% is the immediate successor of m. This latter formula
also has a Gédel number, which can be calculated quite
easily. But instead of making the calculation, we can
identify the number by an unambiguous meta-mathe-

matical characterization: it is the Gédel number of the

formula that is obtained from the formula with
Gddel number m, by substituting for the variable with
Gadel number 15 the numeral for m. This meta-
mathematical characterization uniquely determines a
definite number which is a certain arithmetical func-
tion of the numbers m and 1§, where the function it-
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self can be expressed within the formalized system.®

23 This fuwnction is quite complex. Just how complex be-
comes evident if we try to formulate it in greater detail. Let
us attempt such a formulation, without carrying it to the
bitter end. It was shown on page %3 that m, the Gbdel num-
ber of ‘@Fx)(x = sy, is

28w 34 b'e 511 b 79 X 118 % 1311 be 175 X 197 e 2313 be 299.
To find the Gédel number of ‘(Ix)(x = sm)’ (the formula ob-
tained from the preceding one by substituting for the variable
‘y’ in the latter the numeral for m) we proceed as follows:

This formula contains the numeral ‘m’, which is a defined
sign, and, in accordance with the content of footnote 18, m

ust be replaced by its defining equivalent. When' this is

done, we obtain the formula:
(Ax)(x == sssss5 . . . 50)

where the letter ‘s’ occurs m + 1 times. This formula contains
only the elementary signs belonging to the fundamental vo-
cabulary, so that its Giodel number can be calculated. To do
this, we first obtain the series of Gddel numbers associated |
with the elementary signs of the formula:

8, 41,98 1L, 5% %" - b0

in which the number 7 occurs m + 1 times. We next take
the preduct of the first m + 10 primes in order of magnitude,
each prime being raised to a power equal to the Gidel num-
ber of the corresponding elementary sign. Let us refer to this
number as 7, so that

r=28 3 gt x g1t X 7% X 128 X 151 X 195 X 197 X 237
X29TX 317X ... X Pt

where f,,.19 15 the (m + 10)th prime in order of magnitude.
Now compare the two Gédel numbers m and r. m contains

"a prime factor raised to the power 13; r contains all the prime

factors of m and many others besides, but none of them are
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The number can therefore be designated within the
calculus. This designation will be written as ‘sub (m,
13, m)’, the purpose of this form being to recall the
meta-mathematical characterization which it repre-
sents, viz., ‘the Gdidel number of the formula obtained
from the formula with Goidel number m, by substi-
tuting for the variable with the Gédel number 13 the nu-
meral for m’. We can now drop the example and gen-
eralize. The reader will see readily that the expression
‘sub (y, 13, ¥)’ is the mirror image within the formal-
ized arithmetical calculus of the meta-mathematical
characterization: ‘the Gédel number of the formula
that is obtained from the formula with Gédel num-
ber y, by substituting for the variable with Gédel num-
ber 13 the numeral for y’. He will also note that when
a definite numeral is substituted for ‘y’ in ‘sub (y, 13,
y)'—for example, the numeral for m or the numeral
for two hundred forty three million—the resulting ex-
pression designates a definite integer which is the
Godel number of a certain formula.?

raised to the power r3. The number r can thus be obtained
from the number m, by replacing the prime factor in m which
is raised to the power 1§ with other primes raised to some
power different from 15. To state exactly and in full detail
how r is related to m is not possible without introducing a
great deal of additianal notational apparatus; this is done in
Godel's original paper. But encugh has been said to indicate
that the number r is a definite arithmetical function of m and
13

24 Several questions may occur to the reader that need to
be answered. It may be asked why, in the meta-mathematical
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characterization just mentioned; we say that it is “the nu-
meral for 9" which is to be substituted for a certain variable,
rather than “the number 9.” The answer depends on the
distinction, already discussed, between mathematics and meta-
mathematics, and calls for a brief elucidation of the difference
between numbers and numerals. A numeral is a sign, a
linguistic expression, something which one can write down,
erase, copy, and so on. A number, on the other hand, is some-
thing which a numeral names or designates, and which can-
not literally be written down, erased, copied, and so on. Thus,
we say that 10 is the number of our fingers, and, in making
this statement, we are ateributing a certain “property” to the
class of our fingers; but it would evidently be absurd to say
thac this property is a numeral, Again, the number 10 is
named by the Arabic numeral ‘10', as well as by the Roman
letter ‘X’; these names are different, though they name the
same number. In short, when we make a substitution for a
numerical variable {which is a letter or sign) we are putting
one sign in place of another sign. We cannot literally sub-
stitute a number for 2 sign, because a number is a property of
classes (and is sometimes said to be a concept), not something
we can put on paper. It follows that, in substituting for a nu-
merical variable, we can substitute only a numeral (or some
other numerical expression, such as s0° or 7 + 5), and not' a
number. This explains why, in the above meta-mathematical
characterization, we state that we are substituting for .the
variable the numeral for (the number) y, rather than the
number vy itself.

The reader may wonder what number is designated by
‘sub (y, 13, ¥Y if the formula whose Godel number is y does not
happen to contain the variable with Gédel number 15-—that
is, if the formula does not contain the variable *y’. Thus,
sub (243,000,000, 18, 243,000,000) is the Gédel number of the
formula obtained from the formula with Gédel number
243,000,000 by substituting for the variable ‘4’ the numeral
‘243,000,000, But if the reader consults Table 4, he will find
that 248,000,000 is the Gidel number of the formula ‘0 = 0,
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which does not contain the variable ‘y’. What, then, is the
formula that is obtzined from ‘0= 0" by substituting for
the variable ‘v’ the numeral for the number 243,000,000 The
simple answer is that, since ‘0 = " does not contain this vari-
able, no substitution can be made—or, what amounts to the
same thing, that the formula obtained from ‘0 = 0' is this very
same formula. Accordingly, the number designated by
‘sub (248,000,000, 1§, 245,000,000) is 248,000,000.

The reader may also be puzzled as to whether ‘sub {y, 13, ¥)’
is a formule within the arithmetical system in the sense that,
for example, ‘@x)}(x = sy), ‘0 =0", and ‘Dem (x, z) " are for-
mulas. The answer is no, for the following reason. The ex-
pression ‘0 = ¢ is called a formula, because it asserts a relation
between two numbers and is thus capable of having truth or
falsity significantly attributed to it. Similarly, when definite
mamerals are substituted for the variables in ‘Dem (x, z)’, this
expression formulates a relation between two numbers, and
50 becomes a statement that is either true or false. The same
holds for ‘@x)(x =sy). On the other hand, even when a
definite numeral is substituted for ‘y’ in ‘sub {y, 13, ¥}, the re-
sulting expression does not assert anything and therefore can-
not be true or false. It merely designates or names a number,
by describing it as a certain function of other numbers. The
difference between a formadla (which is In effect a statement
about numbers, and so is either true or false) and a name-
function (which is in effect a name that identifies a number,
and so is neither true nor false) may be clarified by some
further illustrations. ‘s = g’ is a formula which, though false,
declares that the two numbers § and g are equal; ‘52 = 42 4 g%
is also a formula which asserts that a definite relation holds
between the three numbers 5, 4, and §; and, more generally,
‘y = f(x)' is a formula which asserts that a certain relation
holds between the unspecified numbers x and y. On the other
hand, ‘2 + 3’ expresses a function of the two numbers 2z and
3, and so names a certain number (in fact, the number g); it
is not a formula, for it clearly would be nonsensical to ask
whether ‘2z + g’ is true or false. ‘(7 X ) + 8 expresses an-
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C The heart of Godel's argument
At last we are equipped to follow in ontline Godel’s

‘main argument. We shall begin by enumerating the

steps in a general way, so that the reader can get a
bird’s-eye view of the sequence.

Gadel showed (i) how to construct an arithmetical
formula G that represents the meta-mathematical
statement: “The formula G is not demonstrable’. This
formula G thus ostensibly says of itself that it is not
demonstrable. Up to a point, G is constructed analo-
gously to the Richard Paradox. In that Paradox, the
expression ‘Richardian’ is associated with a certain
number #, and the sentence ‘n is Richardian’ is con-

" structed. In Godel’s argument, the formula G is also

associated with a certain number A, and is so con-
structed- that it corresponds to the statement: “L'he for-
mula with the associated number A is not demonstra-
ble’. But (ii) Godel also showed that G is demon-
strable if, and only if, its formal negation ~ G is de-
monstrable. This step in the argument is again analo-
gous to a step in the Richard Paradox, in which it is
proved that n is Richardian if, and only if, # is not

other function of the three numbers 5, 7, and 8, and designates
the number 43. And, more generally, “f(x)’ expresses a func-
tion of x, and identifies a certain number when a definite
numeral is substituted for ‘x’ and when a definite meaning is
given to the functionsign ‘", In short, while ‘Dem (x, z)’ is a
formula because it has the form of a statement about num-
bers, ‘sub (y, 13, )" is not a formula because it has only the

“form of a name for numbers.
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.

Richardian. However, if a formula and its own nega-
tion are both formally demonstrable, the arithmetical
calculus is not consistent. Accordingly, if the calculus
is consistent, neither G nor ~ G is formally derivable

from the axioms of arithmetic. Therefore, if arith-

metic is consistent, G is a formally undecidable for-
mula. Gdadel then proved (iil) that, though G is not
formally demonstrable, it nevertheless is a ¢rue arich-
metical formula, Tt is true in the sense that it asserts
that every integer possesses a certain arithmetical prop-
erty, which can be exactly defined and is exhibited by
whatever integer is examined. (iv) Since G is both
true and formally undecidable, the axioms of arith-
metic are incomplete. In other words, we cannot de-
duce all arithmetical truths from the axioms. More-
over, Godel established that arithmetic is essentially
incomplete: even if additional axioms were assumed so
that the true formula G could be formally derived from
the augmented set, another true but formally unde-
cidable formula could be constructed. (v) Next, Gédel
described how to construct an arithmetical formula A
that represents the meta-mathematical statement:
‘Arithmetic is consistent’; and he proved that the for-
mula ‘A D G’ is formally demonstrable. Finally, he
showed that the formula A is not demonstrable. From
this it follows that the consistency of arithmetic cannot
be established by an argument that can be represented
in the formatl arithmetical calculus.

Now, to give the substance of the argument more
fully:
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(i} The formula ‘~ Dem (x, z)’ has already been
identified. It represents within formalized arithmetic
the meta-mathematical statement: “The sequence of
formulas with the Gddel number x is not a proof for
the formula with the Godel number z’. The prefix
‘(x)’ is now introduced into the Dem formula. This
prefix performs the same function in the formalized
system as does the English phrase-‘For every x’. On
attaching this prefix, we have a new formula: ‘(x)
~ Dem (x, z)’, which represents within arithmetic the
meta-mathematical statement: ‘For every x, the se-
quence of formulas with Godel number x is not a
proof for the formula with Godel number z". The new
formula is therefore the formal paraphrase (strictly
speaking, it is the unique representative), within the
calculus, of the meta-mathematical statement: “The
formula with Gédel number z is not demonstrable’—
or, to put it another way, ‘No proof can be adduced for
the formula with Go6del number 2’

What Gédel showed is that a certain special case of
this formula is not formally demonstrable. To con-
struct this special case, begin with the formula dis-
played as line (1):

(1) (x) ~ Dem (x, sub (¥, 13, )}

This formula belongs to the arithmetical calculus, but
it represents a meta-mathematical statement. The
question is, which one? The reader should first recall
that the expression ‘sub (y, 13, y)’ designates a num-
ber. This number is the Gédel number of the formula
obtained from the formula with Gédel number y, by

G



88 Gddel's Proof

substituting for the variable with Gédel number 13 the
numeral for y* It will then be evident that the for-
mula of line (1) represents the meta-mathematical
statement: ‘The formula with Gédel number sub {y,
13, ¥} 1s not demonstrable’.*®

28 It is of utmost importance to recognize that ‘sub (y, 18, ¥)",
though it is an expression in formalized arithmetic, is not a
formula but rather a name-function for identifying a number
(see explanatory footnote 24). The number so identified, haw-
ever, is the Gédel number of a formula—of the formula ob-
tained from the formula with Gédel number y, by substituting
for the variable *y’ the numeral for y.

28 This statement can be expanded still further to read:
“The formula [whose Goédel number is the number of the
formula] obtained from the [ormula with Gddel number v,
by substituting for the variable with Gdédel number 13 the
numeral for y, is not demonstrable’.

The reader may be puziled by the fact that, in the meta-
mathematical statement ‘“The formula with Godel number
sub (v, 13, ) is not demonstrable’, the expression ‘sub (y, 13, ¥)'
does not appear within quotation marks, although it has been
repeatedly stated in the text that ‘sub (y, 13, ¥} is an expres-
sion. The point involved hinges once more on the distinction
between using an expression to talk about what the expression
designates (in which case the expression is not placed within
quotation marks) and talking about the expression itself (in
which case we must use a name for the expression and, in con-
formity with the convention for constructing such names, must
place the expression within quotation marks). An example
will help. “7 - 5’ is an expression which designates a number;
on the other hand, 7 + 5 is a number, and not an expression.
Similarly, ‘sub (243,000,000, 13§, 243,000,000) is an expression
which designates the Gédel number of a formula (see Table
4); but sub (248,000,000, 13, 245,000,000) is the Gédel number
of a formula, and is not an expression.
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But, since the formula of line (1) belongs to the
arithmetical calculus, it has a Gédel number that can
actually be calculated. Suppose the number to be n.
We now substitute for the variable with Godel num-
ber 15 (i.e., for the variable “y’) in the formula of line
(1) the numeral for n. A new formula is then ob-
tained, which we shall call ‘G’ (after Godel) and dis-
play under that label:

(G) (x) ~ Dem (x, sub (n, 13, n)}

Formula G is the special case we promised to con-
struct.

Now, this formula occurs within the arithmetical
calculus, and therefore must have a Gddel number.
What is the number? A little reflection shows that it is
sub (n, 13, n). To grasp this, we must recall that
sub (n, 13, n) is the Godel number of the formula
that is obtained from the formula with Godel num-
ber n by substituting for the variable with Goédel num-
ber 13 (i.e., for the variable ‘y’) the numeral for n.
But the formula G has been obtained from the formula
with Godel number n (1.e., from the formula displayed
on line (1)) by substituting for the variable ‘y’ occur-
ring in it the numeral for n. Hence the Gédel num-
ber of G is in fact sub (n, 13, n}.

But we must also remember that the formula G is
the mirror image within the arithmetical calculus of
the meta-mathematical statement: “The formula with
Gddel number sub (n, 13, n) is not demonstrable’. It
follows that the arithmetical formula *(x} ~ Dem (x,
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sub (n, 13, 1))’ represents in the calculus the meta-
mathematical statement: “"The formula ‘(x} ~ Dem (x,
sub (n, 13, n))’ is not demonstrable’. In a sense, there-
fore, this arithmetical formula G can be construed as
asserting of itself that it is not demonstrable.

(if) We come to the next step, the proof that G is not
formally demonstrable. Gédel’s demonstration resem-
bles the development of the Richard Paradox, but stays
clear of its fallacious reasoning.* The argument is
relatively unencumbered. ‘It proceeds by showing that
if the formula G were demonstrable then its formal

27 It may be useful to make explicit the resemblance as well
as the dissimilarity of the present argument to that used in
the Richard Paradox. The main point to observe is that the
formula G is not identical with the meta-mathematical state-
ment with which it is associated, but only represents (or
mirrors) the latter within the arithmetical calculus. In the
Richard Paradox (as explained on p. 63 above) the number n
is the number associated with a certain melg-mathematical ex-
‘pression, In the Gddel construction, the number 7 is as-
sociated with a certaln arithmetical formula belonging to the
formal calculus, though this arithmetical formula in fact
represents a meta-mathematical statement. (The formula
represents this statement, because the meta-mathematics of
arithmetic has been mapped onte arithmetic.) In developing
the Richard Paradox, the question is asked whether the num-
ber n possesses the meta-mathematical property of being
Richardian. In the Gédel construction, the question asked is
whether the number sub (n, 13, n) possesses a certain arith-
metical property—namely, the arithmetical property expressed
by the formula ‘(x) ~ Dem (x, zy. There is therefore no con-
fusion in the Gédel construction between statements within
arithmetic and statements about arithmetic, such as occurs in
the Richard Paradox.
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contradictory (namely, the formula ‘~ (x) ~ Dem (x,
sub (n, 13, n))’") would also be demonstrable; and, con-
versely, that if the formal contradictory of ‘G were
demonstrable then G itself would also be demonstra-
ble. Thus we have: G is demonstrable if, and only if,
~ G is demonstrable.® But as we noted earlier, if a

28 This is not what Godel actually proved; and the state-
ment in the text, an adaptation of a theorem cbtained by
J. Barkley Rosser in 1936, is used for the sake of simplicity in -
exposition. What Godel actually showed is that if G is
demonstrable then ~ G is demonstrable (so that arithmetic is
then inconsistent); and if ~ G is demonstrable then arith-
metic is w-inconsistent, What is w-inconsistency? Let ‘P° be
some arithmetical predicate. Then arithmetic would be
w-inconsistent if it were possible to demonstrate hoth the for-
mula ‘@x)P(x) (ie., “There is at least one number that has
the property. P’) and also each of th& infinite set of formulas
‘~ P(OY, ‘"~ P(1), ‘~ P(2), etc. (i.e, 'O does not have the
property P, ‘1 does not have the property ¥, ‘2 does not have
the property P, and so on}. A little reflection shows that if a
calculus is inconsistent then it is also w-inconsistent; but the
converse does not necessarily hold: a system may be @-incon-
sistent without being inconsistent. For a system to be incon-
sistent, both ‘(3x)P{x)’ and ‘(x) ~ P(x}’ must be demonstrable.
However, although if a system is w-inconsistent both ‘(3x)
P(x)’ and each of the infinite set of formulas ‘~ P(0),
‘~ P(1Y, ‘~ P(2), etc, are demonstrable, the formula ‘(x) ~
P(x) may nevertheless not be demonstrable, so that the system
is not inconsistent.

We outline the first part of Gidel's argument that if G is
demonstrable then ~ G is demonstrable. Suppose the formula
G were demonstrable. Then there must be a sequence of for-
mulas within arithmetic that constitutes a proof for G. Let
the Géidel number of this.proof be k. Accordingly, the arith-
metical relation designated by Dem (x, z)" must hold between
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formula and its formal negation can both be derived
from a set of axioms, the axioms are not consistent.
Whence, if the axioms of the formalized system of
arithmetic are consistent, neither the formula G nor
its negation is demonstrable. In short, if the axioms
are consistent, G is formally undecidable—in the pre-
cise technical sense that neither G nor its contradictory
can be formally deduced from the axioms.

(1it} This conclusion may not appear at first sight to
be of capital importance. Why is it so remarkable, it
may be asked, that a formula can be constructed within
arithmetic which is undecidable? There is a surprise
in store which illuminates the profound implications
of this result. For, although the formula G is unde-
cidable if the axioms of the system are consistent, it

k, the G6del number of the prool, and sub (n, 13, n), the Godel
number of G, which is to say that ‘Dem (%, sub (n, 1§, n))’ must
be a true arithmetical formula. However, it can be shown that
this arithmetical relation is of such type that, if it holds be-
tween a definite pair of numbers, the formula that expresses
this fact is demonstrable. Consequently, the formula ‘Dem (%,
sub (r, 13, n)) is not only true, but also formally demonstrable;
that is, the formula is a theorem. But, with the help of the
Transformation Rules in elementary logic, we can immedi-
ately derive from this theorem the formula ‘~ {x) ~ Dem (x,
sub (n, 13, n))’. We have therefore shown that if the formula G
is demonstrable its formal negation is demonstrable. It fol-
lows that if the formal system is consistent the formula G is
not demonstrable.

A somewhat analogous but more complicated argument is
required to show that if ~ G is demonstrable then G is also
demonstrable. We shall not attempt to outline if,
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can nevertheless be shown by meta-mathematical rea-
soning that G is true. That is, it can be shown that G
formulates a complex but definite numerical property
which necessarily holds of all integers—just as the for-
mula ‘(x) ~ (x 4 § = 2)° {which, when it is inter-
preted in the usual way, says that no cardinal number,
when added to 3, vields a sum equal to 2) expresses an-
other, likewise necessary (though much simpler) prop-
erty of all integers. The reasoning that validates the
truth of the undecidable formula G is straightforward.
First, on the assumption that arithmetic is consistent,
the meta-mathematical statement “The formula ‘(x)
~ Dem (x, sub (n, 13, n)}’ is not demonstrable’ has
been proven true. Second, this statement is repre-
sented within arithmetic by the very formula men-
tioned in the statement. Third, we recall that meta-
mathematical statements have been mapped onto the
arithmetical formalism in such a way that true meta-
mathematical statements correspond to true arithmeti-
cal formulas. (Indeed, the setting up of such a corre-
spondence is the raison d’étre of the mapping; as, for
example, in analytic geometry where, by virtue of this
process, true geometric statements always correspond
to true algebraic statements.) It follows that the for-
mula G, which corresponds to a true meta-mathemati-
cal statement, must be true. It should be noted, how-
ever, that we have established an arithmetical truth,
not by deducing it formally from the axioms of arith-
metic, but by a meta-mathematical argument.

(iv) We now remind the reader of the notion of
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“completeness” introduced in the discussion of the
sentential calculus. It was explained that the axioms of
a deductive system are “complete” if every true state-
ment that can be expressed in the system is formally
deducible from the axioms. If this is not the case, that
is, if not every true statement expressible in the system
is deducible, the axioms are “incomplete.” But, since
we have just established that G is a true formula of
arithmetic not formally deducible within it, it follows
that the axioms of arithmetic are incomplete—on the
hypothesis, of course, that they are consistent. More-
over, they are essentially incomplete: even if G were
added as a further axiom, the augmented set would
still not suffice to yield formally all arithmetical truths.
For, if the initial axioms were augmented in the sug-
gested manner, another true but undecidable arith-
metical formula could be constructed in the enlarged
system; such a formula could be constructed merely by
repeating in the new system the procedure used origi.
nally for specifying a true but undecidable formula in
the initial system. This remarkable conclusion holds,
no matter how often the initial system is enlarged. We
are thus compelled to recognize a fundamental limita-
tion in the power of the axiomatic method. Against
previous assumptions, the vast continent of arithmeti-
cal truth cannot be brought into systematic order by
laying down once for all a set of axioms from which
every true arithmetical statement can be formally de-
rived.

(v) We come to the coda of Gddel’s amazing intel-
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lectual symphony. The steps have been traced by
which he grounded the meta-mathematical statement:
‘If arithmetic is consistent, it is incomplete’. But it can
also be shown that this conditional statement taken as
a whole is represented by a demonstrable formula
within formalized arithmetic.

This crucial formula can be easily constructed. As
we explained in Section V, the meta-mathematical
staternent ‘Arithmetic is consistent’ is equivalent to the
statement ‘There is at least one formula of arithmetic
that 1s not demonstrable’. The latter is represented in
the formal calculus by the following formula, which we
shall call ‘A’:

(A) Ay} (x) ~ Dem (x, y)

In words, thissays: “There is at least one number y such
that, for every number x, x does not stand in the rela-
tion Dem to y’. Interpreted meta-mathematically, the
formula asserts: “Fhere is at least one formula of arith-
metic for which no sequence of formulas constitutes a
proof’. The formula A therefore represents the ante-
cedent clause of the meta-mathematical statement ‘If
arithmetic is consistent, it 1s incomplete’. On the other
hand, the consequent clause in this statement—
namely, ‘It [arithmetic] is incomplete’—follows directly
from “There is a true arithmetical statement that is not
formally demonstrable in arithmetic’; and the latter,
as the reader will recognize, is represented in the arith-
metical calculus by an old friend, the formula G. Ac-
cordingly, the conditional meta-mathematical state-



96  Gddel's Proof

ment ‘If arithmetic is consistent, it is incomplete’ is
represented by the formula:

(3y)(x} ~ Dem (x, y) O (x) ~ Dem (x, sub (n, 13, n))

which, for the sake of brevity, can be symbolized by
‘A2 G'. (This formula can be proved formally de-
monstrable, but we shall not in these pages undertake
the task.)

We now show that the formula A is not demonstra-
ble. For suppose it were. Then, since A2 G is de-
monstrable, by use of the Rule of Detachment the for-
mula G would be demonstrable. But, unless the calcu-
lus is inconsistent, G is formally undecidable, that is,
not demonstrable. Thus if arithmetic is consistent, the
formula A is not demonstrable.

What does this signify? The formula A represents
the meta-mathematical statement ‘Arithmetic is con-
sistent’. If, therefore, this statement could be estab-
lished by any argument that can be mapped onto a se-
quence of formulas which constitutes a proof in the
arithmetical calculus, the formula A would itself be
demonstrable. But this, as we have just seen, is im-
possible, if arithmetic is consistent. The grand final
step is before us: we must conclude that if arithmetic
is consistent its consistency cannot be established by
any meta-mathematical reasoning that can be repre-
sented within the formalism of arithmetic!

This imposing result of Gidel's analysis should not
be misunderstood: it does not exclude a meta-mathe-
matical proof of the consistency of arithmetic. What it
excludes is a proof of consistency that can be mirrored
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by the formal deductions of arithmetic.?*® Meta-mathe-
matical proofs of the consistency of arithmetic have, in
fact, been constructed, notably by Gerhard Gentzen, a
member of the Hilbert school, in 1936, and by others
since then.® These proofs are of great logical signifi-
cance, among other reasons because they propose new
forms of meta-mathematical constructions, and because
they thereby help make clear how the class of rules of
inference needs to be enlarged if the consistency of
arithmetic is to be established. But these proofs can-

not be represented within the arithmetical calculus;
and, since they are not finitistic, they do not achieve

the proclaimed objectives of Hilbert's original pro-
gram,

2 The reader may be helped on this point by the reminder

that, similarly, the proof that it is impossible to trisect an
arbitrary angle with compass and straight-edge does not mean
that an angle cannot be trisected by any means whatever. On
the contrary, an arbitrary angle can be trisected if, for ex-
ample, in addition to the use of compass and straight-edge, one
is permitted to employ a fixed distance marked on the straight-
edge.

# Gentzen's proof depends on arranging all the demonstra-
tions of arithmetic in a linear order according to their degree
of “simplicity.” The arrangement turns out to have a patiern
that is of a certain “wransfinite ordinal” type. (The theory of
transfinite ordinal numbers was created by the German
mathematician Georg Cantor in the nineteenth century.} The
proof of consistency is obtained by applying to this linear
order a rule of inference called “the principle of transfinite in-
duction.” Gentzen’s argument cannot be mapped onto the
formalism of arithmetic. Moreover, although most students
do not.question the cogency of the proof, it is not finitistic in
the sense of Hilbert’s original stipuldtions for an absolute
proof of consistency.
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Concluding Reflections

The import of Godel's conclusions is far-reaching,
though it has not yet been fully fathomed. These con-
clusions show that the prospect of finding for every
deductive system (and, in particular, for a system in
which the whole of arithmetic can be expressed) an
absolute proof of consistency that satisfies the finitistic
requirements of Hilbert’s proposal, though not logi-
cally impossible, is most unlikely.®* They show also
that there is an endless number of true arithmetical
statements which cannot be formally deduced from any
given set of axioms by a closed set of rules of inference.
It follows that an axiomatic approach to number the-

31 The possibility of constructing a finitistic absolute proot
of consistency for arithmetic is not excluded by Godel’s results.
Gédel showed that no such proof is possible that can be repre-
sented within arithmetic. His argument does not eliminate
the possibility of strictly finitistic proofs that cannot be rep-
resented within arithmetic. But no one today appears to have
a clear idea of what a finitistic proof would be like that is not
capable of formulation within arithmetic.
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ory, for example, cannot exhaust the domain of arith-
metical truth. It follows, also, that what we under-
stand by the process' of mathematical proof does not
coincide with the exploitation of a formalized axio-
matic method. A formalized axiomatic procedure is
based on an initially determined and fixed set of axi-
oms and transformation rules. As Godel’s own argu-
ments show, no antecedent limits can be placed on the
inventiveness of mathematicians in devising new rules
of proof. Gonsequently, no final account can be given
of the precise logical form of valid mathematical dem-
onstrations. In the light of these circumstances,
whether an all-inclusive definition of mathematical or
logical truth can be devised, and whether, as Gddel
himself appears to believe, only a thoroughgoing phil-
osophical “realism” of the ancient Platonic type can
supply an adequate definition, are problems still under
debate and too difficult for further consideration
here.®?

82 Platonic realism takes the view that mathematics does not
create or invent its “objects,” but discovers them as Columbus
discovered America., Now, if this is true, the objects must in
some sense “exist” prior to thejr discovery. According to
Platonic doctrine, the objects of mathematical study are not
found in the spatio-temporal order. They are disembodied
eternat Forms or Archetypes, which dwell in a distinctive
realm accessible only to the intellect. On this view, the tri-
angular or circular shapes of physical bodies that can be per-
ceived by the senses are not the proper objects of mathematics.
These shapes are merely imperfect embodiments of an indi-
visible “perfect” Triangle or “perfect” Circle, which is un-
created, is never fully manifested by material things, and can
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Godel’s conclusions bear on the question whether a
calculating machine can be constructed that would
match the human brain in mathematical intelligence.
Today’s calculating machines have a fixed set of direc:
tives built into them; these directives correspond to
the fixed rules of inference of formalized axiomatic
procedure. The machines thus supply answers to prob-
lems by operating in a step-by-step manner, each step
being controlled by the built-in directives. But, as
Godel showed in his incompleteness theorem, there are
innumerable problems in elementary number theory
that fall outside the scope of a fixed axiomatic method,
and that such engines are incapable of answering, how-
ever intricate and ingenious their built-in mechanisms
may be and however rapid their operations. Given a
definite problem, a machine of this type might be built
for solving it; but no one such machine can be built for
solving every problem. The human brain may, to be
sure, have built-in limitations of its own, and there
may be mathematical problems it is incapable of solv-
ing. But, even so, the brain appears to embody a strue-
ture of rules of operation which is far more powerful

be grasped solely by the exploring mind of the mathematician.
Godel appears to hold a similar view when he says, “Classes
and concepts may . . . be conceived as real objects . . . existing
independently of our definitions and constructions. It seems
to me that the assumption of such objects is quite as legitimate
as the assumption of physical bodies and there is quite as much
reason to believe in their existence” (Kurt Godel, “Russell’s
Mathematical Logic.” in The Philosophy of Bertrand Russell
(ed. Paul A. Schilpp, Evanston and Chicago, 1944), p. 187)-
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than the structure of currently conceived artificial ma-
chines. There is no immediate prospect of replacing
the human mind by robots.

Gaodel’s proof should not be construed as an invita-
tion to despair or as an excuse for mystery-mongering.
The discovery that there are arithmetical truths which
cannot be demonstrated formally does not mean that
there are truths which are forever incapable of be-
coming known, or that a “mystic” intuition (radically
different in kind and authority from what is generally
operative in intellectual advances) must replace cogent
proof. It does not mean, as a recent writer claims, that
there are “ineluctable limits to human reason.” It
does mean that the resources of the human intellect
have not been, and cannot be, fully formalized, and
that new principles of demonstration forever await in-
vention and discovery. We have seen that mathemati-
cal propositions which cannot be established by formal
deduction from a given set of axioms may, neverthe-
less, be established by “informal” meta-mathematical
reasoning. It would be irresponsible to claim that
these formally indemonstrable truths established by
meta-mathematical arguments are based on nothing
better than bare appeals to intuition.

Nor do the inherent limitations of calculating ma-
chines imply that we cannot hope to explain living
matter and human reason in physical and chemical
terms. The possibility of such explanations is neither
precluded nor affirmed by Godel's incompleteness
theorem. The theorem does indicate that the struc-
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ture and power of the human mind are far more com-
plex and subtle than any non-iving machine yet en-
visaged. Gédel's own work is a remarkable example
of such complexity and subtlcty. It is an occasion, not
for dejection, but for a renewed appreciation of the
powers of creative reason.

Appendix

Noles

1. (page 11) Itwasnot until 1899 that the arithmetic
of cardinal numbers was axiomatized, by the Italian
mathematician Giuseppe Peano, His axioms are five
in number. They are formulated with the help of
three undefined terms, acquaintance with the latter
being assumed. The terms are: ‘number’, ‘zero’, and
‘immediate successor of . Peano’s axioms can be stated
as follows:

1. Zero is a number.

2. The immediate successor of a number
is a number.

3. Zero is not the immediate successor of a
number.

4. No two numbers have the same immedi-
ate successor.

5. Any property belonging to zero, and
also to the immediate successor of every num-
ber that has the property, belongs to all num-
bers.

The last axiom formulates what is often called the
“principle of mathematical induction.”
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